Role of momentum transfer in the quenching of Gamow-Teller strength

Marketin, Tomislav and Martinez-Pinedo, Gabriel and Paar, Nils and Vretenar, Dario (2012) Role of momentum transfer in the quenching of Gamow-Teller strength. Physical Review C, 85 (5). pp. 54313-9. ISSN 0556-2813

PDF - Published Version
Language: English

Download (836kB) | Preview


Differential cross sections for the (p, n) and (n, p) reactions on 90Zr over the interval of 0–50-MeV excitation energy were used to determine the corresponding Gamow-Teller (GT) strengths, and the resulting quenching factor is ≈0.9 with respect to the Ikeda sum rule. In this procedure the contribution of the isovector spin monopole (IVSM) strength was subtracted from the total strength without taking into account the interference between the GT and the IVSM modes. Purpose was to determine the quantitative effect of the IVSM excitation mode on the L=0 strength in charge-exchange reactions on several closed-shell nuclei and the Sn isotopic chain. The fully consistent relativistic Hartree-Bogoliubov model plus proton-neutron relativistic quasiparticle random-phase approximation (pn-RQRPA) are employed in the calculation of transition strength in the β− and β+ channels. The inclusion of the higher-order terms, that include the effect of finite momentum transfer, in the transition operator shifts a portion of the strength to the high-energy region above the GT resonance. The total strength is slightly enhanced in nuclei with small neutron-to-proton ratios but remains unchanged with increasing neutron excess. Terms that include momentum transfer in the transition operator act mostly to shift the strength to high excitation energies but hardly affect the total strength. Based on the strength obtained using the full L=0 transition operator in the pn-RQRPA calculation, we have estimated the impact of the IVSM on the strength measured in the charge-exchange reactions on 90Zr and found that the data are consistent with the Ikeda sum rule.

Item Type: Article
Keywords: nuclear energy density functional, Gamow-Teller strength, quasiparticle random phase approximation
Date: May 2012
Subjects: NATURAL SCIENCES > Physics > Nuclear Physics
Additional Information: Copyright (2012) by the American Physical Society.
Divisions: Faculty of Science > Department of Physics
Project code: 119-1191005-1010
Publisher: American Physical Society
Depositing User: Gordana Stubičan Ladešić
Date Deposited: 09 Jun 2014 12:56
Last Modified: 23 Feb 2016 16:08

Actions (login required)

View Item View Item

Nema podataka za dohvacanje citata