The recent high-resolution measurement of the electric dipole (E1) polarizability \(\alpha_D \) in \(^{208}\text{Pb} \) [A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)] provides a unique constraint on the neutron-skin thickness of this nucleus. The neutron-skin thickness \(r_{\text{skin}} \) of \(^{208}\text{Pb} \) is a quantity of critical importance for our understanding of a variety of nuclear and astrophysical phenomena. To assess the model dependence of the correlation between \(\alpha_D \) and \(r_{\text{skin}} \), we carry out systematic calculations for \(^{208}\text{Pb} \), \(^{132}\text{Sn} \), and \(^{48}\text{Ca} \) based on the nuclear density functional theory using both nonrelativistic and relativistic energy density functionals. Our analysis indicates that whereas individual models exhibit a linear dependence between \(\alpha_D \) and \(r_{\text{skin}} \), this correlation is not universal when one combines predictions from a host of different models. By averaging over these model predictions, we provide estimates with associated systematic errors for \(r_{\text{skin}} \) and \(\alpha_D \) for the nuclei under consideration. We conclude that precise measurements of \(r_{\text{skin}} \) in both \(^{48}\text{Ca} \) and \(^{208}\text{Pb} \)—combined with the recent measurement of \(\alpha_D \)—should significantly constrain the isovector sector of the nuclear energy density functional.

DOI: 10.1103/PhysRevC.85.041302
as it is highly sensitive to the density dependence of the symmetry energy. This sensitivity suggests the existence of a correlation: the larger r_{skin}, the larger α_D. Indeed, the approximate proportionality of these two quantities is expected based on both macroscopic arguments [24,25] and microscopic calculations [8,26]. The recently completed high-resolution ($\bar{\rho},\bar{\rho}')$ measurement at the Research Center for Nuclear Physics, Osaka University (RCNP) of the distribution of $E1$ strength in ^{208}Pb over a wide range of excitation energy [27] has, therefore, created considerable excitement. Of particular relevance to our work is the precise value of the measured electric dipole polarization of ^{208}Pb: $\alpha_D = (20.1 \pm 0.6) \text{ fm}^2$.

The purpose of this Rapid Communication is fourfold. First, we examine the robustness of the correlation between the dipole polarization and the neutron-skin thickness of ^{208}Pb. Second, in order to provide a meaningful estimate of r_{skin} from α_D, we compute the associated systematic error. Third, we predict α_D in ^{48}Ca and ^{132}Sn with quantified uncertainties. Finally, we assess the importance of the followup PREX measurement of r_{skin} in ^{48}Ca.

Generally, to assess a linear correlation between two observables A and B within one given model, one resorts to a least-squares covariance analysis, with the correlation coefficient

$$C_{AB} = \frac{|\Delta A \Delta B|}{\sqrt{\Delta A^2 \Delta B^2}},$$

(1)

providing the proper statistical measure [28]. In Eq. (1) the overline means an average over the statistical sample. A value of $|C_{AB}| = 1$ means that the two observables are fully correlated whereas $C_{AB} = 0$ implies that they are totally uncorrelated. Recently, the statistical measure C_{AB} was used to study correlations between various nuclear observables [8] in the context of the Skyrme SV-min model [29]. In particular, it was concluded that good isovector indicators that strongly correlate with the neutron radius of ^{208}Pb are its electric dipole polarizability as well as neutron skins and radii of neutron-rich nuclei [8]. Indeed, by relying on the strong correlation between α_D and r_{skin} ($C_{AB} = 0.98$) predicted by such density functional theory (DFT) calculations, Tamii et al. deduced a value of $0.156^{+0.025}_{-0.021} \text{ fm}$ for the neutron-skin thickness of ^{208}Pb.

However, the correlation coefficient C_{AB} cannot assess systematic errors that reflect constraints and limitations of a given model [8]. Such systematic uncertainties can only emerge by comparing different models (or sufficiently flexible variants of a model) and this is precisely what has been done in this Rapid Communication. To assess the linear dependence between two observables A and B for a sample of several models, the correlation coefficient C_{AB}^{models} is now obtained by averaging over the predictions of those models. Although the correlation coefficient C_{AB}^{models} determined in such a way may not have a clear statistical interpretation, it is nevertheless an excellent indicator of linear dependence.

To this end, we have computed the distribution of $E1$ strength using both relativistic and nonrelativistic DFT approaches with different energy density functionals (EDFs). In all cases, these self-consistent models have been calibrated to selected global properties of finite nuclei and some parameters of nuclear matter. Once calibrated, these models are used without any further adjustment to compute the $E1$ strength R_{E1} using a consistent random-phase approximation. The electric dipole polarization is then obtained from the inverse energy-weighted sum [8,26,30]:

$$\alpha_D = \frac{8\pi}{9} \rho^2 \int_0^\infty \omega^{-1} R_{E1}(\omega) d\omega.$$

(2)

The relation between α_D and r_{skin} for ^{208}Pb is displayed in Fig. 1 using the predictions from the 48 EDFs chosen in this work. In particular, the up triangles mark predictions from a broad choice of Skyrme EDFs that have been widely used in the literature: SGII, SIII, SkI3, SkI4, SkM+, SkO, SkP, SkX, SLy4, SLy6 (see Refs. [31,32] for the original references), Sk255 [33], BK17 [34], LNS [35], and UNEDF0 and UNEDF1 [36]. In addition, we consider a collection of relativistic and Skyrme EDFs that have been systematically varied around an optimal model without a significant deterioration in the quality of the fit. (This is particularly true for the case of the isovector interaction which at present remains poorly constrained.) Those results are marked in Fig. 1 as NL3/FSU [26,37] (circles), DD-ME [38] (squares), and Skyrme-SV [29] (down triangles). Note that the “stars” in the figure are meant to represent the predictions from the optimal models within the chain of systematic variations of the symmetry energy. At first glance a clear (positive) correlation between the dipole polarizability and the neutron skin is discerned.

Yet, on closer examination, one observes a significant scatter in the results, especially for the standard Skyrme models. In particular, by including the predictions from all the 48 EDFs considered here, the correlation $C_{AB}^{\text{models}} = 0.77$ is obtained. However, as seen in Table I, within each set of the systematically varied models an almost perfect correlation...
is found. Note that by imposing the recent experimental constraints on r_{skin} and α_D, several of the models—especially those with either a very soft or very stiff symmetry energy—may already be ruled out. Thus, if we average our theoretical results over the set of 25 EDFs ("Set-25") whose predictions fall within the RCNP value of α_D, we obtain $r_{\text{skin}} = (0.168 \pm 0.022)$ fm, a value that is fairly close to the one obtained in Ref. [27]. It is to be noted that 23 of those 25 EDFs are consistent with the PREX constraint of r_{skin} greater than 0.15 fm. However, the average theoretical value is significantly below the current PREX mean of 0.33 fm [3]. If confirmed by the anticipated higher-precision (1%) PREX run, this large difference could either indicate the need for significant revisions of current nuclear structure models or of the models employed by PREX to deduce r_{skin} from the neutron form factor, or both. Provided that the new PREX and theoretical average values of r_{skin} are closer, in order to discriminate between theoretical models of Fig. 1 and further constraint theory, an accuracy of at least 0.03 fm on the experimental value of the neutron radius will be required. Based on the central PREX value of $r_n = 5.78$ fm [3], this translates to a 0.5% measurement.

Using either lighter nuclei measured at larger momentum transfers or nuclei with a larger neutron excess will increase the parity-violating asymmetry. Therefore, it is pertinent to ask whether parity-violating experiments in other nuclei may be warranted [39]. To this end, we have computed data-to-data relations between the neutron-skin thickness of ^{208}Pb and the neutron-skin thickness of two doubly magic neutron-rich nuclei: stable ^{48}Ca and unstable ^{132}Sn. While parity-violating experiments on radioactive nuclei are unlikely to happen in the foreseeable future, such experiments on stable targets may serve to calibrate experiments with hadronic probes that could eventually be used to extract neutron radii of short-lived systems such as ^{132}Sn.

Figure 2(a) displays model predictions for the neutron-skin thickness of ^{132}Sn as a function of the corresponding r_{skin} in ^{208}Pb. The displayed correlation is both strong and fairly model independent. Indeed, $C_{\text{AB}}^{\text{models}} = 0.997$ for the set of 48 EDFs used in this work, and it is even closer to unity for the systematically varied forces listed in Table I. This suggests that new experimental information on r_{skin} in ^{132}Sn is not likely to provide additional constraints on the theoretical models used here, provided that an accurate measurement of the neutron-skin thickness of ^{208}Pb is available. Averaging our results, a theoretical estimate for r_{skin} in ^{132}Sn of (0.232 ± 0.022) fm is obtained with Set-25. In addition, we predict a value of (10.081 ± 0.150) fm3 for α_D.

The situation for the case of the neutron-skin thickness in ^{48}Ca shown in Fig. 2(b) is different. Whereas the correlation coefficient among the three systematically varied models remains close to unity (see Table I), there is a significant spread in the predictions of all 48 models that is driven primarily by the traditional Skyrme forces. This suggests that an accurate measurement of r_{skin} in ^{208}Pb is not sufficient to significantly

TABLE I. Least-square correlation coefficient, slope, and intercept between various observables and the neutron-skin thickness of ^{208}Pb for the systematically varied models: NL3/FSU, DD-ME, and Skyrme-SV. Slope and intercept are obtained by fitting a straight line through the data.

<table>
<thead>
<tr>
<th>Model</th>
<th>$\alpha_D^{[208}\text{Pb}]$</th>
<th>$r_{\text{skin}}^{[132}\text{Sn}]$</th>
<th>$r_{\text{skin}}^{[48}\text{Ca}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$C_{\text{AB}}^{\text{model}}$</td>
<td>Slope (fm2)</td>
<td>Intercept (fm3)</td>
</tr>
<tr>
<td>Skyrme</td>
<td>0.996</td>
<td>29.08</td>
<td>15.53</td>
</tr>
<tr>
<td>DD-ME</td>
<td>0.994</td>
<td>31.99</td>
<td>14.52</td>
</tr>
<tr>
<td>NL3/FSU</td>
<td>0.994</td>
<td>29.89</td>
<td>13.97</td>
</tr>
</tbody>
</table>

FIG. 2. (Color online) Predictions from the 48 nuclear EDFs used in the text for the neutron-skin thickness of ^{208}Pb and ^{132}Sn (a) and ^{48}Ca (b). Constrains on the neutron-skin thickness from PREX [3] have been incorporated into the plot.
constrain r_{skin} in ^{48}Ca. Conversely, by measuring the neutron-skin thickness of both ^{48}Ca and ^{208}Pb, and incorporating the recent measurement of α_0 in ^{208}Pb, one should be able to significantly constrain the isovector sector of the nuclear EDF. The theoretical model-averaged estimate for r_{skin} in ^{48}Ca is (0.176 ± 0.018) fm for Set-25. Moreover, a prediction of (2.306 ± 0.089) fm3 for α_D in ^{48}Ca is obtained.

In summary, we have examined the correlation between the electric dipole polarizability and neutron-skin thickness of ^{208}Pb using a large ensemble of 48 reasonable nuclear energy density functionals. Physical arguments based on a macroscopic analysis suggest that these two isovector observables should be correlated, although this correlation may display some systematic model dependence. In fact, we have found that as accurately calibrated models are systematically varied around their optimal value, strong correlations between r_{skin} and α_0 in ^{208}Pb do emerge. As these models are combined, however, the correlation weakens. To study the associated systematic errors, we have performed calculations of α_D and r_{skin} using the subset of models that are consistent with the experimental value of α_D in ^{208}Pb [27]. Using this subset we predict the following “model-averaged” values of r_{skin}: (0.168 ± 0.022) fm in ^{208}Pb, (0.232 ± 0.022) fm in ^{132}Sn, and (0.176 ± 0.018) fm in ^{48}Ca—as well as an electric dipole polarizability of (10.081 ± 0.150) fm3 in ^{132}Sn and (2.306 ± 0.089) fm3 in ^{48}Ca. We note that these predictions are consistent with the experimental values determined from both antiprotonic atoms and proton elastic scattering for ^{132}Sn [13] and ^{208}Pb [13–15,17]. Given these results, we conclude that the followup PREX measurements of r_{skin} in ^{208}Pb will be of great value in further constraining the poorly known isovector sector of the nuclear EDF. Moreover, the analysis carried out in this Rapid Communication has enabled us to identify additional critical observables that could help discriminate among theoretical models. Specifically, we endorse a measurement of the neutron radius in ^{48}Ca, as it provides information that is complimentary to the ^{208}Pb measurement. Finally, in the near future we aim to present a complementary study of r_{skin}, α_D, and the low-energy $E1$ strength by means of a detailed statistical covariance analysis within the realm of accurately calibrated models [8].

Useful discussions with Chuck Horowitz are gratefully acknowledged. This work was supported in part by the Office of Nuclear Physics, US Department of Energy under Contracts No. DE-FG05-92ER40750 (FSU) and No. DE-FG02-96ER40963 (UTK), and by the BMBF under Contract No. 06ER9063.