The faint radio sky: VLBA observations of the COSMOS field

Herrera Ruiz, N. and Middelberg, E. and Deller, A. and Norris, R. P. and Best, P. N. and Brisken, W. and Schinnerer, E. and Smolčić, Vernesa and Delvecchio, I. and Momjian, E. and Bomans, D. and Scoville, N. Z. and Carilli, C. (2017) The faint radio sky: VLBA observations of the COSMOS field. Astronomy and Astrophysics, 607. A132. ISSN 0004-6361

PDF - Published Version
Language: English

Download (8MB) | Preview


Context. Quantifying the fraction of active galactic nuclei (AGN) in the faint radio population and understanding their relation with star-forming activity are fundamental to studies of galaxy evolution. Very long baseline interferometry (VLBI) observations are able to identify AGN above relatively low redshifts (z > 0.1) since they provide milli-arcsecond resolution. Aims. We have created an AGN catalogue from 2865 known radio sources observed in the Cosmic Evolution Survey (COSMOS) field, which has exceptional multi-wavelength coverage. With this catalogue we intend to study the faint radio sky with statistically relevant numbers and to analyse the AGN – host galaxy co-evolution, making use of the large amount of ancillary data available in the field. Methods. Wide-field VLBI observations were made of all known radio sources in the COSMOS field at 1.4 GHz to measure the AGN fraction, in particular in the faint radio population. We describe in detail the observations, data calibration, source detection and flux density measurements, parts of which we have developed for this survey. The combination of number of sources, sensitivity, and area covered with this project are unprecedented. Results. We have detected 468 radio sources, expected to be AGN, with the Very Long Baseline Array (VLBA). This is, to date, the largest sample assembled of VLBI detected sources in the sub-mJy regime. The input sample was taken from previous observations with the Very Large Array (VLA). We present the catalogue with additional optical, infrared and X-ray information. Conclusions. We find a detection fraction of 20 ± 1%, considering only those sources from the input catalogue which were in principle detectable with the VLBA (2361). As a function of the VLA flux density, the detection fraction is higher for higher flux densities, since at high flux densities a source could be detected even if the VLBI core accounts for a small percentage of the total flux density. As a function of redshift, we see no evolution of the detection fraction over the redshift range 0.5 < z < 3. In addition, we find that faint radio sources typically have a greater fraction of their radio luminosity in a compact core – ∼70% of the sub-mJy sources detected with the VLBA have more than half of their total radio luminosity in a VLBI-scale component, whereas this is true for only ∼30% of the sources that are brighter than 10 mJy. This suggests that fainter radio sources differ intrinsically from brighter ones. Across our entire sample, we find the predominant morphological classification of the host galaxies of the VLBA detected sources to be early type (57%), although this varies with redshift and at z > 1.5 we find that spiral galaxies become the most prevalent (48%). The number of detections is high enough to study the faint radio population with statistically significant numbers. We demonstrate that wide-field VLBI observations, together with new calibration methods such as multi-source self-calibration and mosaicing, result in information which is difficult or impossible to obtain otherwise.

Item Type: Article
Keywords: catalogs, galaxies - active, radio continuum - galaxies
Date: 2017
Subjects: NATURAL SCIENCES > Physics > Astronomy and Astrophysics
Additional Information: © 2017 ESO. Received: 12 May 2017. Accepted: 13 July 2017. Published online: 28 November 2017. Acknowledgements. N.H.R. acknowledges support from the Deutsche Forschungsgemeinschaft through project MI 1230/4-1. V.S. and I.D. acknowledge the European Union’s Seventh Framework programme under grant agreement 337595 (ERC Starting Grant, “CoSMass”). P.N.B. is grateful for support from STFC via grant ST/M001229/1. We wish to thank the anonymous referee for the helpful comments, which have improved this paper. This research made use of Topcat (Taylor 2005), available at This research also made use of APLpy, an open-source plotting package for Python hosted at, and Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). We wish to thank the staff of the VLBA who greatly supported the experimental observations in this project. The VLBA is operated by the Long Baseline Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Divisions: Faculty of Science > Department of Physics
Publisher: EDP Sciences
Depositing User: Vernesa Smolčić
Date Deposited: 05 Mar 2019 16:19
Last Modified: 07 Mar 2019 12:58

Actions (login required)

View Item View Item