The VLA-COSMOS 3 GHz Large Project: Average radio spectral energy distribution of highly star-forming galaxies

Tisanić, Krešimir and Smolčić, Vernesa and Delhaize, Jacinta and Novak, Mladen and Intema, H. and Delvecchio, Ivan and Schinnerer, E. and Zamorani, G. and Bondi, M. and Vardoulaki, E. (2019) The VLA-COSMOS 3 GHz Large Project: Average radio spectral energy distribution of highly star-forming galaxies. Astronomy and Astrophysics, 621. A139-1-A139-19. ISSN 0004-6361

[img]
Preview
PDF - Published Version
Language: English

Download (2MB) | Preview

Abstract

We construct the average radio spectral energy distribution (SED) of highly star-forming galaxies (HSFGs) up to z ~ 4. Infrared and radio luminosities are bound by a tight correlation that is defined by the so-called q parameter. This infrared–radio correlation provides the basis for the use of radio luminosity as a star-formation tracer. Recent stacking and survival analysis studies find q to be decreasing with increasing redshift. It was pointed out that a possible cause of the redshift trend could be the computation of rest-frame radio luminosity via a single power-law assumption of the star-forming galaxies’ (SFGs) SED. To test this, we constrained the shape of the radio SED of a sample of HSFGs. To achieve a broad rest-frame frequency range, we combined previously published Very Large Array observations of the COSMOS field at 1.4 GHz and 3 GHz with unpublished Giant Meterwave Radio Telescope (GMRT) observations at 325MHz and 610MHz by employing survival analysis to account for non-detections in the GMRT maps. We selected a sample of HSFGs in a broad redshift range (z ∈ [0.3, 4], SFR ≥ 100 M_⊙ yr^-1) and constructed the average radio SED. By fitting a broken power-law, we find that the spectral index changes from α _1 = 0.42 ± 0.06 below a rest-frame frequency of 4.3 GHz to α_2 = 0.94 ± 0.06 above 4.3 GHz. Our results are in line with previous low-redshift studies of HSFGs (SFR > 10 M_⊙ yr^-1) that show the SED of HSFGs to differ from the SED found for normal SFGs (SFR < 10 M_⊙ yr^-1). The difference is mainly in a steeper spectrum around 10 GHz, which could indicate a smaller fraction of thermal free–free emission. Finally, we also discuss the impact of applying this broken power-law SED in place of a simple power-law in K-corrections of HSFGs and a typical radio SED for normal SFGs drawn from the literature. We find that the shape of the radio SED is unlikely to be the root cause of the q-z trend in SFGs.

Item Type: Article
Keywords: galaxies: evolution; galaxies: statistics; radio continuum: galaxies; galaxies: star formation
Date: 19 January 2019
Subjects: NATURAL SCIENCES > Physics > Astronomy and Astrophysics
Additional Information: © ESO 2019. Received 1 August 2018; Accepted 22 November 2018; Published online 18 January 2019.
Divisions: Faculty of Science > Department of Physics
Publisher: EDP Sciences
Depositing User: Vernesa Smolčić
Date Deposited: 03 May 2019 12:07
Last Modified: 06 May 2019 12:40
URI: http://digre.pmf.unizg.hr/id/eprint/5935

Actions (login required)

View Item View Item